Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure

نویسندگان

  • Daniel Peña
  • Francisco J. Prieto
  • Júlia Viladomat
چکیده

In this paper we study the properties of a kurtosis matrix and propose its eigenvectors as interesting directions to reveal the possible cluster structure of a data set. Under a mixture of elliptical distributions with proportional scatter matrix, it is shown that a subset of the eigenvectors of the fourth-ordermomentmatrix corresponds to Fisher’s linear discriminant subspace. The eigenvectors of the estimated kurtosis matrix are consistent estimators of this subspace and its calculation is easy to implement and computationally efficient, which is particularly favourable when the ratio n/p is large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EIGENVECTORS OF COVARIANCE MATRIX FOR OPTIMAL DESIGN OF STEEL FRAMES

In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calcula...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Rhetorical Structure Analysis of EFLs’ Written Narratives of a Picture Story

This study was set to reveal how second language learners use rhetorical relations in their written narratives in terms of Rhetorical Structure Theory (RST) primarily proposed by Mann & Thompson (1987) and developed by Mann, Matthiessen & Thompson (1992). To this end, sixty written narratives based on the picture story book ‘Frog, where are you?’ were collected from EFL learners and were put to...

متن کامل

EcoICA: Skewness-based ICA via Eigenvectors of Cumulant Operator

Independent component analysis (ICA) is an important unsupervised learning method. Most popular ICAmethods use kurtosis as a metric of non-Gaussianity to maximize, such as FastICA and JADE. However, their assumption of kurtosic sources may not always be satisfied in practice. For weak-kurtosic but skewed sources, kurtosis-based methods could fail while skewness-based methods seem more promising...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2010